CSQRT(3) | Library Functions Manual | CSQRT(3) |
csqrt
— complex
square root function
#include
<complex.h>
double complex
csqrt
(double
complex z);
long double complex
csqrtl
(long
double complex z);
float complex
csqrtf
(float
complex z);
csqrt
(z)
computes the square root of the complex floating-point number
z, with a branch cut on the negative real axis. The
result is in the right half-plane, including the imaginary axis. For all
complex z, csqrt(conj(z)) = conj(csqrt(z)).
The conjugate symmetry of csqrt() is used to abbreviate the specification of special values.
csqrt
(±0
+ 0i) returns +0 + 0i.
csqrt
(x
+ inf i) returns inf + inf i for all x (including NaN).
csqrt
(x
+ NaN i) returns NaN + NaN i.
csqrt
(-inf
+ yi) returns 0 + inf i for any positively-signed finite y.
csqrt
(inf
+ yi) returns inf + 0i for any positively-signed finite y.
csqrt
(-inf
+ NaN i) returns NaN + inf i.
csqrt
(inf
+ NaN i) returns inf + NaN i.
csqrt
(NaN
+ yi) returns NaN + NaN i.
csqrt
(NaN
+ NaN i) returns NaN + NaN i.
If z is in the upper half-plane, then
csqrt
(z) is in the upper-right
quadrant of the complex plane. If z is in the lower
half-plane, then csqrt
(z) is
in the lower-right quadrant of the complex plane.
The csqrt
() function conforms to ISO/IEC
9899:2011.
December 11, 2006 | BSD 4 |