| CATANH(3) | Library Functions Manual | CATANH(3) |
catanh — complex
inverse hyperbolic tangent function
double complex
catanh(double
complex z);
long double complex
catanhl(long
double complex z);
float complex
catanhf(float
complex z);
catanh(z)
computes the inverse hyperbolic tangent of the complex floating-point number
z, with branch cuts outside the interval [-1, 1] along
the real axis.
catanh()
returns values in a strip of the complex plane with imaginary part in the
interval [-Pi/2, Pi/2].
For all complex floating point numbers z,
catanh(conj(z)) = conj(catanh(z)). catanh(-z) = -catanh(z)
The symmetries of catanh() are used to abbreviate the specification of special values.
catanh(0
+ 0i) returns 0 + 0 i.
catanh(0
+ NaN i) returns 0 + NaN i.
catanh(1
+ 0i) returns inf + 0i and raises the divide-by-zero flag.
catanh(x
+ inf i) returns 0 + Pi/2 i, for finite positive-signed x.
catanh(x
+ NaN i) returns NaN + NaN i, for non-zero finite x.
catanh(inf
+ yi) returns 0 + Pi/2 i, for finite positive-signed y.
catanh(inf
+ inf i) returns 0 + Pi/2 i.
catanh(inf
+ NaN i) returns 0 + NaN i.
catanh(NaN
+ yi) returns NaN + NaN i, for finite y.
catanh(NaN
+ inf i) returns 0 + Pi/2 i.
catanh(NaN
+ NaN i) returns NaN + NaN i.
The catanh() function conforms to ISO/IEC
9899:2011.
| December 11, 2006 | BSD 4 |