pt::peg::to::param(n) | Parser Tools | pt::peg::to::param(n) |
pt::peg::to::param - PEG Conversion. Write PARAM format
package require Tcl 8.5
package require pt::peg::to::param ?1?
package require pt::peg
package require pt::pe
pt::peg::to::param reset
pt::peg::to::param configure
pt::peg::to::param configure option
pt::peg::to::param configure option value...
pt::peg::to::param convert serial
Are you lost ? Do you have trouble understanding this document ? In that case please read the overview provided by the Introduction to Parser Tools. This document is the entrypoint to the whole system the current package is a part of.
This package implements the converter from parsing expression grammars to PARAM markup.
It resides in the Export section of the Core Layer of Parser Tools, and can be used either directly with the other packages of this layer, or indirectly through the export manager provided by pt::peg::export. The latter is intented for use in untrusted environments and done through the corresponding export plugin pt::peg::export::param sitting between converter and export manager.
IMAGE: arch_core_eplugins
The API provided by this package satisfies the specification of the Converter API found in the Parser Tools Export API specification.
The converter to PARAM markup recognizes the following configuration variables and changes its behaviour as they specify.
The PARAM code representation of parsing expression grammars is assembler-like text using the instructions of the virtual machine documented in the PackRat Machine Specification, plus a few more for control flow (jump ok, jump fail, call symbol, return).
It is not really useful, except possibly as a tool demonstrating how a grammar is compiled in general, without getting distracted by the incidentials of a framework, i.e. like the supporting C and Tcl code generated by the other PARAM-derived formats.
It has no direct formal specification beyond what was said above.
Assuming the following PEG for simple mathematical expressions
PEG calculator (Expression) Digit <- '0'/'1'/'2'/'3'/'4'/'5'/'6'/'7'/'8'/'9' ; Sign <- '-' / '+' ; Number <- Sign? Digit+ ; Expression <- '(' Expression ')' / (Factor (MulOp Factor)*) ; MulOp <- '*' / '/' ; Factor <- Term (AddOp Term)* ; AddOp <- '+'/'-' ; Term <- Number ; END;
one possible PARAM serialization for it is
# -*- text -*- # Parsing Expression Grammar 'TEMPLATE'. # Generated for unknown, from file 'TEST' # # Grammar Start Expression # <<MAIN>>: call sym_Expression halt # # value Symbol 'AddOp' # sym_AddOp: # / # '-' # '+' symbol_restore AddOp found! jump found_7 loc_push call choice_5 fail! value_clear ok! value_leaf AddOp symbol_save AddOp error_nonterminal AddOp loc_pop_discard found_7: ok! ast_value_push return choice_5: # / # '-' # '+' error_clear loc_push error_push input_next "t -" ok! test_char "-" error_pop_merge ok! jump oknoast_4 loc_pop_rewind loc_push error_push input_next "t +" ok! test_char "+" error_pop_merge ok! jump oknoast_4 loc_pop_rewind status_fail return oknoast_4: loc_pop_discard return # # value Symbol 'Digit' # sym_Digit: # / # '0' # '1' # '2' # '3' # '4' # '5' # '6' # '7' # '8' # '9' symbol_restore Digit found! jump found_22 loc_push call choice_20 fail! value_clear ok! value_leaf Digit symbol_save Digit error_nonterminal Digit loc_pop_discard found_22: ok! ast_value_push return choice_20: # / # '0' # '1' # '2' # '3' # '4' # '5' # '6' # '7' # '8' # '9' error_clear loc_push error_push input_next "t 0" ok! test_char "0" error_pop_merge ok! jump oknoast_19 loc_pop_rewind loc_push error_push input_next "t 1" ok! test_char "1" error_pop_merge ok! jump oknoast_19 loc_pop_rewind loc_push error_push input_next "t 2" ok! test_char "2" error_pop_merge ok! jump oknoast_19 loc_pop_rewind loc_push error_push input_next "t 3" ok! test_char "3" error_pop_merge ok! jump oknoast_19 loc_pop_rewind loc_push error_push input_next "t 4" ok! test_char "4" error_pop_merge ok! jump oknoast_19 loc_pop_rewind loc_push error_push input_next "t 5" ok! test_char "5" error_pop_merge ok! jump oknoast_19 loc_pop_rewind loc_push error_push input_next "t 6" ok! test_char "6" error_pop_merge ok! jump oknoast_19 loc_pop_rewind loc_push error_push input_next "t 7" ok! test_char "7" error_pop_merge ok! jump oknoast_19 loc_pop_rewind loc_push error_push input_next "t 8" ok! test_char "8" error_pop_merge ok! jump oknoast_19 loc_pop_rewind loc_push error_push input_next "t 9" ok! test_char "9" error_pop_merge ok! jump oknoast_19 loc_pop_rewind status_fail return oknoast_19: loc_pop_discard return # # value Symbol 'Expression' # sym_Expression: # / # x # '\(' # (Expression) # '\)' # x # (Factor) # * # x # (MulOp) # (Factor) symbol_restore Expression found! jump found_46 loc_push ast_push call choice_44 fail! value_clear ok! value_reduce Expression symbol_save Expression error_nonterminal Expression ast_pop_rewind loc_pop_discard found_46: ok! ast_value_push return choice_44: # / # x # '\(' # (Expression) # '\)' # x # (Factor) # * # x # (MulOp) # (Factor) error_clear ast_push loc_push error_push call sequence_27 error_pop_merge ok! jump ok_43 ast_pop_rewind loc_pop_rewind ast_push loc_push error_push call sequence_40 error_pop_merge ok! jump ok_43 ast_pop_rewind loc_pop_rewind status_fail return ok_43: ast_pop_discard loc_pop_discard return sequence_27: # x # '\(' # (Expression) # '\)' loc_push error_clear error_push input_next "t (" ok! test_char "(" error_pop_merge fail! jump failednoast_29 ast_push error_push call sym_Expression error_pop_merge fail! jump failed_28 error_push input_next "t )" ok! test_char ")" error_pop_merge fail! jump failed_28 ast_pop_discard loc_pop_discard return failed_28: ast_pop_rewind failednoast_29: loc_pop_rewind return sequence_40: # x # (Factor) # * # x # (MulOp) # (Factor) ast_push loc_push error_clear error_push call sym_Factor error_pop_merge fail! jump failed_41 error_push call kleene_37 error_pop_merge fail! jump failed_41 ast_pop_discard loc_pop_discard return failed_41: ast_pop_rewind loc_pop_rewind return kleene_37: # * # x # (MulOp) # (Factor) loc_push error_push call sequence_34 error_pop_merge fail! jump failed_38 loc_pop_discard jump kleene_37 failed_38: loc_pop_rewind status_ok return sequence_34: # x # (MulOp) # (Factor) ast_push loc_push error_clear error_push call sym_MulOp error_pop_merge fail! jump failed_35 error_push call sym_Factor error_pop_merge fail! jump failed_35 ast_pop_discard loc_pop_discard return failed_35: ast_pop_rewind loc_pop_rewind return # # value Symbol 'Factor' # sym_Factor: # x # (Term) # * # x # (AddOp) # (Term) symbol_restore Factor found! jump found_60 loc_push ast_push call sequence_57 fail! value_clear ok! value_reduce Factor symbol_save Factor error_nonterminal Factor ast_pop_rewind loc_pop_discard found_60: ok! ast_value_push return sequence_57: # x # (Term) # * # x # (AddOp) # (Term) ast_push loc_push error_clear error_push call sym_Term error_pop_merge fail! jump failed_58 error_push call kleene_54 error_pop_merge fail! jump failed_58 ast_pop_discard loc_pop_discard return failed_58: ast_pop_rewind loc_pop_rewind return kleene_54: # * # x # (AddOp) # (Term) loc_push error_push call sequence_51 error_pop_merge fail! jump failed_55 loc_pop_discard jump kleene_54 failed_55: loc_pop_rewind status_ok return sequence_51: # x # (AddOp) # (Term) ast_push loc_push error_clear error_push call sym_AddOp error_pop_merge fail! jump failed_52 error_push call sym_Term error_pop_merge fail! jump failed_52 ast_pop_discard loc_pop_discard return failed_52: ast_pop_rewind loc_pop_rewind return # # value Symbol 'MulOp' # sym_MulOp: # / # '*' # '/' symbol_restore MulOp found! jump found_67 loc_push call choice_65 fail! value_clear ok! value_leaf MulOp symbol_save MulOp error_nonterminal MulOp loc_pop_discard found_67: ok! ast_value_push return choice_65: # / # '*' # '/' error_clear loc_push error_push input_next "t *" ok! test_char "*" error_pop_merge ok! jump oknoast_64 loc_pop_rewind loc_push error_push input_next "t /" ok! test_char "/" error_pop_merge ok! jump oknoast_64 loc_pop_rewind status_fail return oknoast_64: loc_pop_discard return # # value Symbol 'Number' # sym_Number: # x # ? # (Sign) # + # (Digit) symbol_restore Number found! jump found_80 loc_push ast_push call sequence_77 fail! value_clear ok! value_reduce Number symbol_save Number error_nonterminal Number ast_pop_rewind loc_pop_discard found_80: ok! ast_value_push return sequence_77: # x # ? # (Sign) # + # (Digit) ast_push loc_push error_clear error_push call optional_70 error_pop_merge fail! jump failed_78 error_push call poskleene_73 error_pop_merge fail! jump failed_78 ast_pop_discard loc_pop_discard return failed_78: ast_pop_rewind loc_pop_rewind return optional_70: # ? # (Sign) loc_push error_push call sym_Sign error_pop_merge fail! loc_pop_rewind ok! loc_pop_discard status_ok return poskleene_73: # + # (Digit) loc_push call sym_Digit fail! jump failed_74 loop_75: loc_pop_discard loc_push error_push call sym_Digit error_pop_merge ok! jump loop_75 status_ok failed_74: loc_pop_rewind return # # value Symbol 'Sign' # sym_Sign: # / # '-' # '+' symbol_restore Sign found! jump found_86 loc_push call choice_5 fail! value_clear ok! value_leaf Sign symbol_save Sign error_nonterminal Sign loc_pop_discard found_86: ok! ast_value_push return # # value Symbol 'Term' # sym_Term: # (Number) symbol_restore Term found! jump found_89 loc_push ast_push call sym_Number fail! value_clear ok! value_reduce Term symbol_save Term error_nonterminal Term ast_pop_rewind loc_pop_discard found_89: ok! ast_value_push return # #
Here we specify the format used by the Parser Tools to serialize Parsing Expression Grammars as immutable values for transport, comparison, etc.
We distinguish between regular and canonical serializations. While a PEG may have more than one regular serialization only exactly one of them will be canonical.
Assuming the following PEG for simple mathematical expressions
PEG calculator (Expression) Digit <- '0'/'1'/'2'/'3'/'4'/'5'/'6'/'7'/'8'/'9' ; Sign <- '-' / '+' ; Number <- Sign? Digit+ ; Expression <- '(' Expression ')' / (Factor (MulOp Factor)*) ; MulOp <- '*' / '/' ; Factor <- Term (AddOp Term)* ; AddOp <- '+'/'-' ; Term <- Number ; END;
then its canonical serialization (except for whitespace) is
pt::grammar::peg { rules { AddOp {is {/ {t -} {t +}} mode value} Digit {is {/ {t 0} {t 1} {t 2} {t 3} {t 4} {t 5} {t 6} {t 7} {t 8} {t 9}} mode value} Expression {is {/ {x {t (} {n Expression} {t )}} {x {n Factor} {* {x {n MulOp} {n Factor}}}}} mode value} Factor {is {x {n Term} {* {x {n AddOp} {n Term}}}} mode value} MulOp {is {/ {t *} {t /}} mode value} Number {is {x {? {n Sign}} {+ {n Digit}}} mode value} Sign {is {/ {t -} {t +}} mode value} Term {is {n Number} mode value} } start {n Expression} }
Here we specify the format used by the Parser Tools to serialize Parsing Expressions as immutable values for transport, comparison, etc.
We distinguish between regular and canonical serializations. While a parsing expression may have more than one regular serialization only exactly one of them will be canonical.
Assuming the parsing expression shown on the right-hand side of the rule
Expression <- '(' Expression ')' / Factor (MulOp Factor)*
then its canonical serialization (except for whitespace) is
{/ {x {t (} {n Expression} {t )}} {x {n Factor} {* {x {n MulOp} {n Factor}}}}}
This document, and the package it describes, will undoubtedly contain bugs and other problems. Please report such in the category pt of the Tcllib SF Trackers [http://sourceforge.net/tracker/?group_id=12883]. Please also report any ideas for enhancements you may have for either package and/or documentation.
EBNF, LL(k), PARAM, PEG, TDPL, context-free languages, conversion, expression, format conversion, grammar, matching, parser, parsing expression, parsing expression grammar, push down automaton, recursive descent, serialization, state, top-down parsing languages, transducer
Parsing and Grammars
Copyright (c) 2009 Andreas Kupries <andreas_kupries@users.sourceforge.net>
1 | pt |