Inline::C::Cookbook(3) | User Contributed Perl Documentation | Inline::C::Cookbook(3) |
Inline::C::Cookbook - A Cornucopia of Inline C Recipes
It's a lot easier for most of us to cook a meal from a recipe, rather than just throwing things into a pot until something edible forms. So it is with programming as well. "Inline.pm" makes C programming for Perl as easy as possible. Having a set of easy to understand samples, makes it simpler yet.
This Cookbook is intended to be an evergrowing repository of small yet complete coding examples; each showing how to accomplish a particular task with Inline. Each example is followed by a short discussion, explaining in detail the particular features that are being demonstrated.
Many of these recipes are adapted from email discussions I have had with Inline users around the world. It has been my experience so far, that Inline provides an elegant solution to almost all problems involving Perl and C.
Bon Appetit!
It seems that the first thing any programmer wants to do when he learns a new programming technique is to use it to greet the Earth. How can I do this using Inline?
use Inline C => <<'...'; void greet() { printf("Hello, world\n"); } ... greet;
perl -e 'use Inline C=>q{void greet(){printf("Hello, world\n");}};greet'
perl -le 'use Inline C=>q{SV*JAxH(char*x){return newSVpvf("Just Another %s Hacker",x);}};print JAxH+Perl'
A bit fancier but a few bytes too long to qualify as a true one liner :-(
# vowels.pl use Inline 'C'; $filename = $ARGV[0]; die "Usage: perl vowels.pl filename\n" unless -f $filename; $text = join '', <>; # slurp input file $vp = vowel_scan($text); # call our function $vp = sprintf("%03.1f", $vp * 100); # format for printing print "The letters in $filename are $vp% vowels.\n"; __END__ __C__ /* Find percentage of vowels to letters */ double vowel_scan(char* str) { int letters = 0; int vowels = 0; int i = 0; char c; char normalize = 'a' ^ 'A'; /* normalize forces lower case in ASCII; upper in EBCDIC */ char A = normalize | 'a'; char E = normalize | 'e'; char I = normalize | 'i'; char O = normalize | 'o'; char U = normalize | 'u'; char Z = normalize | 'z'; while(c = str[i++]) { c |= normalize; if (c >= A && c <= Z) { letters++; if (c == A || c == E || c == I || c == O || c == U) vowels++; } } return letters ? ((double) vowels / letters) : 0.0; }
Running this script produces:
> perl vowels.pl /usr/dict/words The letters in /usr/dict/words are 37.5% vowels.
It is very important to note that the examples in this cookbook use "char *" to mean a string. Internally Perl has various mechanisms to deal with strings that contain characters with code points above 255, using Unicode. This means that naively treating strings as "char *", an array of 8-bit characters, can lead to problems. You need to be aware of this and consider using a UTF-8 library to deal with strings.
How do I pass a variable-sized list of arguments to an Inline C function?
greet(qw(Sarathy Jan Sparky Murray Mike)); use Inline C => <<'END_OF_C_CODE'; void greet(SV* name1, ...) { Inline_Stack_Vars; int i; for (i = 0; i < Inline_Stack_Items; i++) printf("Hello %s!\n", SvPV(Inline_Stack_Item(i), PL_na)); Inline_Stack_Void; } END_OF_C_CODE
Since there are no types or names associated with each argument, we can't expect XS to handle the conversions for us. We'll need to pop them off the Stack ourselves. Luckily there are two functions (macros) that make this a very easy task.
First, we need to begin our function with a ""Inline_Stack_Vars"" statement. This defines a few internal variables that we need to access the Stack. Now we can use ""Inline_Stack_Items"", which returns an integer containing the number of arguments passed to us from Perl.
NOTE: It is important to only use ""Inline_Stack_"" macros when there is an ellipsis ("...") in the argument list, or the function has a return type of void.
Second, we use the Inline_Stack_Item(x) function to access each argument where "0 <= x < items".
NOTE: When using a variable length argument list, you have to specify at least one argument before the ellipsis. (On my compiler, anyway.) When XS does it's argument checking, it will complain if you pass in less than the number of defined arguments. Therefore, there is currently no way to pass an empty list when a variable length list is expected.
print map {"$_\n"} get_localtime(time); use Inline C => <<'END_OF_C_CODE'; #include <time.h> void get_localtime(SV * utc) { const time_t utc_ = (time_t)SvIV(utc); struct tm *ltime = localtime(&utc_); Inline_Stack_Vars; Inline_Stack_Reset; Inline_Stack_Push(sv_2mortal(newSViv(ltime->tm_year))); Inline_Stack_Push(sv_2mortal(newSViv(ltime->tm_mon))); Inline_Stack_Push(sv_2mortal(newSViv(ltime->tm_mday))); Inline_Stack_Push(sv_2mortal(newSViv(ltime->tm_hour))); Inline_Stack_Push(sv_2mortal(newSViv(ltime->tm_min))); Inline_Stack_Push(sv_2mortal(newSViv(ltime->tm_sec))); Inline_Stack_Push(sv_2mortal(newSViv(ltime->tm_isdst))); Inline_Stack_Done; } END_OF_C_CODE
This example calls the system "localtime", and returns each of the parts of the time struct; much like the perl builtin "localtime()". On each stack push, we are creating a new Perl integer (SVIV) and mortalizing it. The sv_2mortal() call makes sure that the reference count is set properly. Without it, the program would leak memory.
NOTE: The "#include"
statement is not really needed, because Inline
automatically includes the Perl headers which include almost all
standard system calls.
use Inline::Files; use Inline 'C'; my ($foo, $bar); change($foo, $bar); print "\$foo = $foo\n"; print "\$bar = $bar\n"; __C__ int change(SV* var1, SV* var2) { sv_setpvn(var1, "Perl Rocks!", 11); sv_setpvn(var2, "Inline Rules!", 13); return 1; }
It turns out that we can do that with Inline as well. The secret is to use a type of '"SV*"' for each argument that is to be modified. This ensures passing by reference, because no typemapping is needed.
The function can then use the Perl5 API to operate on that argument. When control returns to Perl, the argument will retain the value set by the C function. In this example we passed in 2 empty scalars and assigned values directly to them.
SV *sum(SV *array) { int total = 0; int numelts, i; if ((!SvROK(array)) || (SvTYPE(SvRV(array)) != SVt_PVAV) || ((numelts = av_len((AV *)SvRV(array))) < 0) ) { return &PL_sv_undef; } for (i = 0; i <= numelts; i++) { total += SvIV(*av_fetch((AV *)SvRV(array), i, 0)); } return newSViv(total); }
print greeting('Ingy'); use Inline C => <<'END_OF_C_CODE'; SV* greeting(SV* sv_name) { return (newSVpvf("Hello %s!\n", SvPV(sv_name, PL_na))); } END_OF_C_CODE
I would urge you to stay away from "malloc"ing your own buffer. Just use Perl's built in memory management. In other words, just create a new Perl string scalar. The function "newSVpv" does just that. And "newSVpvf" includes "sprintf" functionality.
The other problem is getting rid of this new scalar. How will the ref count get decremented after we pass the scalar back? Perl also provides a function called "sv_2mortal". Mortal variables die when the context goes out of scope. In other words, Perl will wait until the new scalar gets passed back and then decrement the ref count for you, thereby making it eligible for garbage collection. See "perldoc perlguts".
In this example the "sv_2mortal" call gets done under the hood by XS, because we declared the return type to be "SV*".
To view the generated XS code, run the command ""perl - MInline=INFO,FORCE,NOCLEAN example004.pl"". This will leave the build directory intact and tell you where to find it.
use strict; use warnings; use Inline C => "DATA"; our $mesh_data = "MESH-POINTS 0.0 0.0 0.5 0.25 1.0 0.5 1.5 0.75"; CalcSurfaceHeights(); __DATA__ __C__ #define N_MP 4 void CalcSurfaceHeights() { double x[N_MP], y[N_MP], z; int ix; char *mesh_data = SvPV_nolen(get_sv("main::mesh_data", 0)); sscanf(mesh_data, "MESH-POINTS %lf%lf%lf%lf%lf%lf%lf%lf", x, y, x+1, y+1, x+2, y+2, x+3, y+3); for (ix=0; ix < N_MP; ix++) { z = 0.5*( sin(x[ix]) + sin(y[ix]) ); printf("Surface-Height: %6.3f Mesh-Point: %6.2f, %6.2f\n", z, x[ix], y[ix]); } }
our $mesh_data = "...";
For Perl variables to be directly accessible from Inline::C functions, they must be declared as package variables. Lexical variables, those declared with my, cannot be accessed this way.
In the C code section of the example, the following line is what makes direct access to the Perl variable work;
char *mesh_data = SvPV_nolen(get_sv("main::mesh_data", 0))
Here SvPV_nolen() returns a pointer to the C string contained in the scalar variable. The "_nolen" variation ignores the length of the C string. Hence, the function takes only a single argument, which is the SV* of the scalar variable.
We could have used the usual two-argument form of SvPV() and, since we don't care about the string length, specified PL_na for the second argument. The function call would then change to,
SvPV(get_sv("main::mesh_data", 0), PL_na)
The function get_sv() returns the SV* of a named scalar package variable. It takes a C string, containing the fully qualified name of the variable, as the first argument. The second argument contains flag values related to data type. Since we are only reading the scalar variable, in our example, a value of 0 can be used.
#!/usr/bin/perl use CGI qw(:standard); use Inline Config => DIRECTORY => '/usr/local/apache/Inline'; print header, start_html('Inline CGI Example'), h1(JAxH('Inline')), end_html; use Inline C => <<END; SV* JAxH(char* x) { return newSVpvf("Just Another %s Hacker", x); } END
The solution is to explicitly tell Inline which directory to use with the 'use Inline Config => DIRECTORY => ...' line. Then you need to give write access to that directory from the web server (CGI script).
If you see this as a security hole, then there is another option. Give write access to yourself, but read-only access to the CGI script. Then run the script once by hand (from the command line). This will cause Inline to precompile the C code. That way the CGI will only need read access to the build directory (to load in the shared library from there).
Just remember that whenever you change the C code, you need to precompile it again.
How do I use Inline with mod_perl?
package Factorial; use strict; use Inline Config => DIRECTORY => '/usr/local/apache/Inline', enable => 'UNTAINT'; use Inline 'C'; Inline->init; sub handler { my $r = shift; $r->send_http_header('text/plain'); printf "%3d! = %10d\n", $_, factorial($_) for 1..100; return Apache::Constants::OK; } 1; __DATA__ __C__ double factorial(double x) { if (x < 2) return 1; return x * factorial(x - 1) }
First, mod_perl handlers are usually run with "-T" taint detection. Therefore, we need to enable the UNTAINT option. The next thing to deal with is the fact that this handler will most likely be loaded after Perl's compile time. Since we are using the DATA section, we need to use the special "init()" call. And of course we need to specify a DIRECTORY that mod_perl can compile into. See the above CGI example for more info.
Other than that, this is a pretty straightforward mod_perl handler, tuned for even more speed!
How do I implement Object Oriented programming in Perl using C objects?
my $obj1 = Soldier->new('Benjamin', 'Private', 11111); my $obj2 = Soldier->new('Sanders', 'Colonel', 22222); my $obj3 = Soldier->new('Matt', 'Sergeant', 33333); for my $obj ($obj1, $obj2, $obj3) { print $obj->get_serial, ") ", $obj->get_name, " is a ", $obj->get_rank, "\n"; } #--------------------------------------------------------- package Soldier; use Inline C => <<'END'; /* Allocate memory with Newx if it's available - if it's an older perl that doesn't have Newx then we resort to using New. */ #ifndef Newx # define Newx(v,n,t) New(0,v,n,t) #endif typedef struct { char* name; char* rank; long serial; } Soldier; SV* new(const char * classname, const char * name, const char * rank, long serial) { Soldier * soldier; SV * obj; SV * obj_ref; Newx(soldier, 1, Soldier); soldier->name = savepv(name); soldier->rank = savepv(rank); soldier->serial = serial; obj = newSViv((IV)soldier); obj_ref = newRV_noinc(obj); sv_bless(obj_ref, gv_stashpv(classname, GV_ADD)); SvREADONLY_on(obj); return obj_ref; } char* get_name(SV* obj) { return ((Soldier*)SvIV(SvRV(obj)))->name; } char* get_rank(SV* obj) { return ((Soldier*)SvIV(SvRV(obj)))->rank; } long get_serial(SV* obj) { return ((Soldier*)SvIV(SvRV(obj)))->serial; } void DESTROY(SV* obj) { Soldier* soldier = (Soldier*)SvIV(SvRV(obj)); Safefree(soldier->name); Safefree(soldier->rank); Safefree(soldier); } END
Damian Conway has given us myriad ways of implementing OOP in Perl. This is one he might not have thought of.
The interesting thing about this example is that it uses Perl for all the OO bindings while using C for the attributes and methods.
If you examine the Perl code everything looks exactly like a regular OO example. There is a "new" method and several accessor methods. The familiar 'arrow syntax' is used to invoke them.
In the class definition (second part) the Perl "package" statement is used to name the object class or namespace. But that's where the similarities end Inline takes over.
The idea is that we call a C subroutine called "new()" which returns a blessed scalar. The scalar contains a readonly integer which is a C pointer to a Soldier struct. This is our object.
The "new()" function needs to malloc the memory for the struct and then copy the initial values into it using "savepv()". This also allocates more memory (which we have to keep track of).
The accessor methods are pretty straightforward. They return the current value of their attribute.
The last method "DESTROY()" is called automatically by Perl whenever an object goes out of scope. This is where we can free all the memory used by the object.
That's it. It's a very simplistic example. It doesn't show off any advanced OO features, but it is pretty cool to see how easy the implementation can be. The important Perl call is "newSVrv()" which creates a blessed scalar.
Read "Object Oriented Perl" by Damian Conway, for more useful ways of doing OOP in Perl.
You can learn more Perl calls in perlapi. If you don't have Perl 5.6.0 or higher, visit <http://www.perldoc.com/perl5.6/pod/perlapi.html>
print get('http://www.axkit.org'); use Inline C => Config => LIBS => '-lghttp'; use Inline C => <<'END_OF_C_CODE'; #include <ghttp.h> char *get(SV* uri) { SV* buffer; ghttp_request* request; buffer = NEWSV(0,0); request = ghttp_request_new(); ghttp_set_uri(request, SvPV(uri, PL_na)); ghttp_set_header(request, http_hdr_Connection, "close"); ghttp_prepare(request); ghttp_process(request); sv_catpv(buffer, ghttp_get_body(request)); ghttp_request_destroy(request); return SvPV(buffer, PL_na); } END_OF_C_CODE
One of the most common questions I get is "How can I use Inline to make use of some shared library?". Although it has always been possible to do so, the configuration was ugly, and there were no specific examples.
With version 0.30 and higher, you can specify the use of shared libraries easily with something like this:
use Inline C => Config => LIBS => '-lghttp'; use Inline C => "code ...";
or
use Inline C => "code ...", LIBS => '-lghttp';
To specify a specific library path, use:
use Inline C => "code ...", LIBS => '-L/your/lib/path -lyourlib';
To specify an include path use:
use Inline C => "code ...", LIBS => '-lghttp', INC => '-I/your/inc/path';
perl -le 'use Inline C => q{ double erf(double); }, enable => "autowrap"; print "$_ @{[erf($_)]}" for (0..10)'
The excellent "Term::ReadLine::Gnu" implements Term::ReadLine using the GNU ReadLine library. Here is an easy way to access just "readline()" from that library:
package MyTerm; use Inline C => Config => enable => autowrap => LIBS => "-lreadline -lncurses -lterminfo -ltermcap "; use Inline C => q{ char * readline(char *); }; package main; my $x = MyTerm::readline("xyz: ");
Note however that it fails to "free()" the memory returned by readline, and that "Term::ReadLine::Gnu" offers a much richer interface.
The first example wraps a function from the standard math library, so Inline requires no additional "LIBS" directive. The second uses the Config option to specify the libraries that contain the actual compiled C code.
This behavior is always disabled by default. You must enable the "autowrap" option to make it work.
The idea of producing wrapper code given only a function declaration is taken from Swig by David M. Beazley <beazley@cs.uchicago.edu>.
Ingy's inline editorial insight:
This entire entry was contributed by Ariel Scolnicov <ariels@compugen.co.il>. Ariel also first suggested the idea for Inline to support function declaration processing.
use IO::All; use Inline C => sub { io('allheaders.h')->all =~ s/LEPT_DLL extern//gr }, enable => "autowrap", libs => '-lleptonica';
If the header file needs some processing, like removing some text that a full C compiler can deal with, but the Inline::C parser cannot, as in the example above? Well, Perl is good at text-processing.
How do I deal with complex data types like hashes in Inline C?
use Inline C => <<'END_OF_C_CODE'; void dump_hash(SV* hash_ref) { HV* hash; HE* hash_entry; int num_keys, i; SV* sv_key; SV* sv_val; if (! SvROK(hash_ref)) croak("hash_ref is not a reference"); hash = (HV*)SvRV(hash_ref); num_keys = hv_iterinit(hash); for (i = 0; i < num_keys; i++) { hash_entry = hv_iternext(hash); sv_key = hv_iterkeysv(hash_entry); sv_val = hv_iterval(hash, hash_entry); printf("%s => %s\n", SvPV(sv_key, PL_na), SvPV(sv_val, PL_na)); } return; } END_OF_C_CODE my %hash = ( Author => "Ingy döt Net", Nickname => "INGY", Module => "Inline.pm", Version => "0.30", Language => "C", ); dump_hash(\%hash);
Since Perl subroutine calls only pass scalars as arguments, we'll need to use the argument type "SV*" and pass references to more complex types.
The above program dumps the key/value pairs of a hash. To figure it out, just curl up with perlapi for a couple hours. Actually, its fairly straight forward once you are familiar with the calls.
Note the "croak" function call. This is the proper way to die from your C extensions.
How do I create a Hash of Lists from C?
use Inline 'C'; use Data::Dumper; $hash_ref = load_data("./cartoon.txt"); print Dumper $hash_ref; __END__ __C__ static int next_word(char**, char*); SV* load_data(char* file_name) { char buffer[100], word[100], * pos; AV* array; HV* hash = newHV(); FILE* fh = fopen(file_name, "r"); while (fgets(pos = buffer, sizeof(buffer), fh)) { if (next_word(&pos, word)) { array = newAV(); hv_store(hash, word, strlen(word), newRV_noinc((SV*)array), 0); while (next_word(&pos, word)) av_push(array, newSVpvf("%s", word)); } } fclose(fh); return newRV_noinc((SV*) hash); } static int next_word(char** text_ptr, char* word) { char* text = *text_ptr; while(*text != '\0' && *text <= ' ') text++; if (*text <= ' ') return 0; while(*text != '\0' && *text > ' ') { *word++ = *text++; } *word = '\0'; *text_ptr = text; return 1; }
flintstones fred barney jetsons george jane elroy simpsons homer marge bart
The function will read the file, parsing each line into words. Then it will create a new hash, whereby the first word in a line becomes a hash key and the remaining words are put into an array whose reference becomes the hash value. The output looks like this:
$VAR1 = { 'flintstones' => [ 'fred', 'barney' ], 'simpsons' => [ 'homer', 'marge', 'bart' ], 'jetsons' => [ 'george', 'jane', 'elroy' ] };
use Inline C => DATA => LIBS => '-luser32'; $text = "@ARGV" || 'Inline.pm works with MSWin32. Scary...'; WinBox('Inline Text Box', $text); __END__ __C__ #include <windows.h> int WinBox(char* Caption, char* Text) { return MessageBoxA(0, Text, Caption, 0); }
The important thing is that its proof that you can use Inline to interact with Windows DLL-s. Very scary indeed. 8-o
To use Inline on Windows with ActivePerl ( <http://www.ActiveState.com> )you'll need MS Visual Studio. You can also use the Cygwin environment,available at <http://www.cygwin.com> .
#!/usr/bin/cpr int main(void) { printf("Using Perl version %s from a C program!\n\n", CPR_eval("use Config; $Config{version};")); CPR_eval("use Data::Dumper;"); CPR_eval("print Dumper \\%INC;"); return 0; }
This example uses another Inline module, "Inline::CPR", available separately on CPAN. When you install this module it also installs a binary interpreter called "/usr/bin/cpr". (The path may be different on your system)
When you feed a C program to the CPR interpreter, it automatically compiles and runs your code using Inline. This gives you full access to the Perl internals. CPR also provides a set of easy to use C macros for calling Perl internals.
This means that you can effectively "run" C source code by putting a CPR hashbang as the first line of your C program.
"Inline::CPR" can be obtained from <http://search.cpan.org/search?dist=Inline-CPR>
As of version 0.30, Inline has the ability to work in cooperation with other modules that want to expose a C API of their own. The general syntax for doing this is:
use Inline with => 'Module'; use Inline C => ... ;
This tells "Module" to pass configuration options to Inline. Options like typemaps, include paths, and external libraries, are all resolved automatically so you can just concentrate on writing the functions.
use Inline with => 'Event'; Event->timer(desc => 'Timer #1', interval => 2, cb => \&my_callback, ); Event->timer(desc => 'Timer #2', interval => 3, cb => \&my_callback, ); print "Starting...\n"; Event::loop; use Inline C => <<'END'; void my_callback(pe_event* event) { pe_timer * watcher = event->up; printf("%s\n\tEvent priority = %d\n\tWatcher priority = %d\n\n", SvPVX(watcher->base.desc), event->prio, watcher->base.prio ); } END
INC => "-I $path/Event", TYPEMAPS => "$path/Event/typemap", MYEXTLIB => "$path/auto/Event/Event.$so", AUTO_INCLUDE => '#include "EventAPI.h"', BOOT => 'I_EVENT_API("Inline");',
Doing all of this automatically allows you, the programmer, to simply write a function that receives a pointer of type 'pe_event*'. This gives you access to the "Event" structure that was passed to you.
In this example, I simply print values out of the structure. The Perl code defines 2 timer events which each invoke the same callback. The first one, every two seconds, and the second one, every three seconds.
As of this writing, "Event.pm" is the only CPAN module that works in cooperation with Inline.
Joshua Pritikin <joshua.pritikin@db.com> is the author of "Event.pm".
print "9 + 5 = ", add(9, 5), "\n"; print "SQRT(9^2 + 5^2) = ", pyth(9, 5), "\n"; print "9 * 5 = ", mult(9, 5), "\n"; use Inline C => <<'END_C'; int add(int x, int y) { return x + y; } static int mult(int x, int y) { return x * y; } double pyth(int x, int y) { return sqrt(add(mult(x, x), mult(y, y))); } END_C
9 + 5 = 14 SQRT(9^2 + 5^2) = 10.295630140987 Can't locate auto/main/mult.al in @INC ...
Every Inline function that is bound to Perl is also callable by C. You don't have to do anything special. Inline arranges it so that all the typemap code gets done by XS and is out of sight. By the time the C function receives control, everything has been converted from Perl to C.
Of course if your function manipulates the Perl Stack, you probably don't want to call it from C (unless you really know what you're doing).
If you declare a function as "static", Inline won't bind it to Perl. That's why we were able to call "mult()" from C but the call failed from Perl.
use Inline 'C'; for(1..5) { c_func_1('This is the first line'); c_func_2('This is the second line'); print "\n"; } sub perl_sub_1 { print map "$_\n", @_; } __DATA__ __C__ void c_func_2(SV* text) { dSP; ENTER; SAVETMPS; XPUSHs(sv_2mortal(newSVpvf("Plus an extra line"))); PUTBACK; call_pv("perl_sub_1", G_DISCARD); FREETMPS; LEAVE; } void c_func_1(SV* text) { c_func_2(text); }
Actually, this program demonstrates calling a C function which calls another C function which in turn calls a Perl subroutine.
The nice thing about Inline C functions is that you can call them from both Perl-space and C-space. That's because Inline creates a wrapper function around each C function. When you use Perl to call C you're actually calling that function's wrapper. The wrapper handles typemapping and Stack management, and then calls your C function.
The first time we call "c_func_1" which calls "c_func_2". The second time we call "c_func_2" directly. "c_func_2" calls the Perl subroutine ("perl_sub_1") using the internal "perl_call_pv" function. It has to put arguments on the stack by hand. Since there is already one argument on the stack when we enter the function, the "XPUSHs" ( which is equivalent to an "Inline_Stack_Push" ) adds a second argument.
We iterate through a 'for' loop 5 times just to demonstrate that things still work correctly when we do that. (This was where the previous rendition, making use solely of Inline Stack macros, fell down.)
See perlapi for more information about the Perl5 internal API.
use Inline; use Code::Generator; my $c_code = generate('foo_function'); Inline->bind(C => $c_code); foo_function(1, 2, 3);
The "bind()" function of Inline let's you bind (compileloadexecute) C functions at run time. It takes all of the same arguments as "use Inline C => ...".
The nice thing is that once a particular snippet is compiled, it remains cached so that it doesn't need to be compiled again. I can imagine that someday a mad scientist will dream up a self generating modeling system that would run faster and faster over time.
If you know such a person, have them drop me a line.
use strict; use warnings; eval { require Inline; Inline->import (C => Config => BUILD_NOISY => 1); Inline->import (C =><<'EOC'); int foo() { warn("Using Inline\n"); return 42; } EOC }; if ($@) { *foo =\&bar; } sub bar { warn("Using Pure Perl Implementation\n"); return 42; } my $x = foo(); print "$x\n";
Note, too, that the pure perl sub bar can still be explicitly called even if Inline::C is available.
integer function sqarea(r,s) integer r, s sqarea = r*s return end
gfortran -c prod.f -o prod.o ar cru libprod.a prod.o
The function is then accessible as follows:
use warnings; use Inline C => Config => LIBS => '-L/full/path/to/libprod_location -lprod -lgfortran'; use Inline C => <<' EOC'; int wrap_sqarea(int a, int b) { return sqarea_(&a, &b); } EOC $x = 15; $y = $x + 3; $ret = wrap_sqarea($x, $y); print "Product of $x and $y is $ret\n";
Secondly, because fortran subs pass args by reference, we need to pass the addresses of the two integer args to sqarea() when we call it from our Inline::C sub.
If using g77 instead of gfortran, the only necessary change is that we specify '-lg2c' instead of '-lgfortran' in our 'LIBS' setting.
For generic information about Inline, see Inline.
For information about using Inline with C see Inline::C.
For information on supported languages and platforms see Inline-Support.
For information on writing your own Inline language support module, see Inline-API.
Inline's mailing list is inline@perl.org
To subscribe, send email to inline-subscribe@perl.org
Ingy döt Net <ingy@cpan.org>
Sisyphus <sisyphus@cpan.org>
Copyright 2000-2019. Ingy döt Net.
Copyright 2008, 2010-2014. Sisyphus.
This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself.
See <http://www.perl.com/perl/misc/Artistic.html>
2019-05-11 | perl v5.34.0 |